Abstract

Based on the energy and momentum balance equations and three-dimensional Schrodinger equations, a physical model of the quantum coupling and electrothermal effects on the electron transport in GaN transistors is proposed. Quantum coupling and electrothermal effects in GaN transistors cause a reduction in the barrier height, changes in the quantised energy levels of the two-dimensional electron gas, and a decrease in the electron density and source–drain current. This model predicts that the current collapse in GaN transistors can occur under channel electrons with large transverse energy and it can be alleviated by optimising the physical device parameters. The gate length-dependent resistance predicted by the proposed model agrees well with the experimental data reported in the literature. Not only the physical mechanism but also the possibility to improve the reliability of high-electron mobility (HEMT) GaN transistors by optimising its physical parameters has been given in this model due to its analytic nature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call