Abstract
We quantize a homogeneous and isotropic universe for two models of modified teleparallel gravity: one wherein an arbitrary function of the boundary term, namely B, is present in the action, and in the other model, a scalar field that is non-minimally coupled to both the torsion and boundary term. In this regard, we study exact solutions of both the classical and quantum frameworks by utilizing the corresponding Wheeler–DeWitt (WDW) equations of the models. To correspond to the comprehensive classical and quantum levels, in the second model, we propose an appropriate initial condition for the wave packets and observe that they closely adhere to the classical trajectories and reach their peak. We quantify this correspondence using the de Broglie–Bohm interpretation of quantum mechanics. According to this proposal, the classical and Bohmian trajectories coincide when the quantum potential vanishes along the Bohmian paths. Furthermore, we apply the de-parameterization technique to our model in the realm of the problem of time in quantum cosmological models based on the WDW equation, utilizing the global internal time denoted as χ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\chi $$\\end{document}, which represents a scalar field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.