Abstract
We present the lowest order quantum correction to the semiclassical Boltzmann distribution function, and the equation satisfied by this correction is given. Our equation for the quantum correction is obtained from the conventional quantum Boltzmann equation by explicitly expressing the Planck constant in the gradient approximation, and the quantum Wigner distribution function is expanded in powers of Planck constant, too. The negative quantum correlation in the Wigner distribution function which is just the quantum correction terms is naturally singled out, thus obviating the need for the Husimi’s coarse grain averaging that is usually done to remove the negative quantum part of the Wigner distribution function. We also discuss the classical limit of quantum thermodynamic entropy in the above framework.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have