Abstract

In this study, one-dimensional vision of carrier movement based on the band structure of trilayer graphene nanoribbon in the presence of a perpendicular electric field is employed. An analytical model of ABA-stacked trilayer graphene nanoribbon carrier statistics as a fundamental parameter of field effect transistor (FET) in corporation with a numerical solution is presented in the degenerate and non-degenerate limits. The simulated results based on the presented model indicate that the model can be approximated by degenerate and non-degenerate approximations in some numbers of normalised Fermi energy. Analytical model specifies that carrier concentration in degenerate limit is strongly independent of normalised Fermi energy; however, in the non-degenerate limit, it is a strong function of normalised Fermi energy. The proposed model is then compared with other types of graphene. As a result, the developed model can assist in comprehending experiments involving trilayer graphene nanoribbon FET-based devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.