Abstract

Variational quantum algorithms exploit the features of superposition and entanglement to optimize a cost function efficiently by manipulating the quantum states. They are suitable for noisy intermediate-scale quantum (NISQ) computers that recently became accessible to the worldwide research community. Here, we implement and demonstrate the numerical processes on the 5-qubit and 7-qubit quantum processors on the IBM Qiskit Runtime platform. We combine the commercial finite-element-method (FEM) software ABAQUS with the implementation of Variational Quantum Eigensolver (VQE) to establish an integrated pipeline. Three examples are used to investigate the performance: a hexagonal truss, a Timoshenko beam, and a plane-strain continuum. We conduct parametric studies on the convergence of fundamental natural frequency estimation using this hybrid quantum-classical approach. Our findings can be extended to problems with many more degrees of freedom when quantum computers with hundreds of qubits become available in the near future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call