Abstract

The rapid advancement of micro-nano machining technology has led to a decrease in the dimensions of microdevices and microchips, following the principles of Moore’s law. In addition to conventional semiconductor materials like silicon, emerging nanoscale materials such as nanowires, nanotubes, and two-dimensional materials are being considered as promising alternative constituent materials. The mechanical properties of these materials have a significant impact on the performance and service life of these microdevices and microchips. However, conventional mechanical testing methods have difficulty in accurately measuring the properties of these materials at the nanoscale due to limitations in displacement control and microforce sensing. Consequently, there is an urgent need to develop a micromechanical device capable of testing nanoscale solid materials. In this study, we propose a concept based on high-resolution image sequences for the design of an integrated micromechanical device capable of synchronously measuring the force and deformation of tested specimens. The device has been fabricated using ultrafast femtosecond laser etching technology, which offers an efficient and cost-effective approach for manufacturing microstructures and is suitable for processing various materials such as metals and nonmetals. The stiffness of the device plays a crucial role in the design of the micromechanical device, and a stiffness-matching criterion is introduced to ensure appropriate design parameters. The fabricated device is employed to conduct in-situ tension experiments on SiC nanowires and multilayer molybdenum disulfide nanosheet within a scanning electronic microscope, enabling accurate measurement of their strength, modulus, and fracture strain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.