Abstract

It is well-known that Shor's factorization algorithm, Simon's period-finding algorithm, and Deutsch's original XOR algorithm can all be formulated as solutions to a hidden subgroup problem. Here the salient features of the information-processing in the three algorithms are presented from a different perspective, in terms of the way in which the algorithms exploit the non-Boolean quantum logic represented by the projective geometry of Hilbert space. From this quantum logical perspective, the XOR algorithm appears directly as a special case of Simon's algorithm, and all three algorithms can be seen as exploiting the non-Boolean logic represented by the subspace structure of Hilbert space in a similar way. Essentially, a global property of a function (such as a period, or a disjunctive property) is encoded as a subspace in Hilbert space representing a quantum proposition, which can then be efficiently distinguished from alternative propositions, corresponding to alternative global properties, by a measurement (or sequence of measurements) that identifies the target proposition as the proposition represented by the subspace containing the final state produced by the algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.