Abstract

We propose to use the recently predicted two-dimensional "weak-pairing" px + ipy superfluid state of fermionic cold atoms as a platform for topological quantum computation. In the core of a vortex, this state supports a zero-energy Majorana mode, which moves to finite energy in the corresponding topologically trivial "strong-pairing" state. By braiding vortices in the "weak-pairing" state, unitary quantum gates can be applied to the Hilbert space of Majorana zero modes. For readout of the topological qubits, we propose realistic schemes suitable for atomic superfluids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call