Abstract

We discuss the possibility of realizing quantum computation on the basis of a cluster of single interacting nuclear spins in solids. This idea seems to be feasible because of the combination of two techniques—Single Molecule Spectroscopy and Optically Detected Electron Nuclear Double Resonance. Compared to the well-known bulk Nuclear Magnetic Resonance (NMR), the proposed method of quantum computation has the advantage that quantum computation is performed with pure spin states and the quantum processor is more easily scalable. At the same time, the advantages of NMR quantum computation are kept: long coherence time and easy construction of quantum gates. As a specific system to implement the above idea, we discuss the 13C-nuclear spins in the nearest vicinity of a single nitrogen-vacancy (NV) defect center in diamond, which can be optically detected using the technique of scanning confocal microscopy. Owing to the hyperfine coupling of the ground state electron paramagnetic spin S=1 of the center to 13C nuclear spins in a diamond lattice, the states of nuclear spins in the vicinity of the defect-center can be addressed individually. Preliminary consideration shows that it should be possible to address up to 12 individual 13C nuclear spins. The dephasing time of the nuclear spin states at low temperatures allows realization up to 105 gates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call