Abstract
By considering a nanoscale Aharonov-Bohm (AB) interferometer containing a parrallel-coupled double dot coupled to the source and drain electrodes, we investigate the AB phase oscillations of transport current via the bonding and antibonding state channels. The results we obtained justify the experimental analysis given in [Phys. Rev. Lett. \textbf{106}, 076801 (2011)] that bonding state currents in different energy configurations are almost the same. On the other hand, we extend the analysis to the transient transport current components flowing through different channels, to explore the effect of the parity of bonding and antibonding states on the AB phase dependence of the corresponding current components in the transient regime. The relations of the AB phase dependence between the quantum states and the associated current components are analyzed in details, which provides useful information for the reconstruction of quantum states through the measurement of the transport current in such systems. With the coherent properties in the quantum dot states as well as in the transport currents, we also provide a way to manipulate the bonding and antibonding states by the AB magnetic flux.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.