Abstract

Topological quantum states cannot be created from product states with local quantum circuits of constant depth and are in this sense more entangled than topologically trivial states, but how entangled are they? Here we quantify the entanglement in one-dimensional topological states by showing that local quantum circuits of linear depth are necessary to generate them from product states. We establish this linear lower bound for both bosonic and fermionic one-dimensional topological phases and use symmetric circuits for phases with symmetry. We also show that the linear lower bound can be saturated by explicitly constructing circuits generating these topological states. The same results hold for local quantum circuits connecting topological states in different phases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.