Abstract
We provide numerical evidence that the perturbative spectrum of anomalous dimensions in maximally supersymmetric SU(N)SU(N) Yang-Mills theory is chaotic at finite values of NN. We calculate the probability distribution of one-loop level spacings for subsectors of the theory and show that for large NN it is given by the Poisson distribution of integrable models, while at finite values it is the Wigner-Dyson distribution of the Gaussian orthogonal ensemble random matrix theory. We extend these results to two-loop order and to a one-parameter family of deformations. We further study the spectral rigidity for these models and show that it is also well described by random matrix theory. Finally we demonstrate that the finite-NN eigenvectors possess properties of chaotic states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.