Abstract
U( n) Yang–Mills theory on the fuzzy sphere S 2 N is quantized using random matrix methods. The gauge theory is formulated as a matrix model for a single Hermitian matrix subject to a constraint, and a potential with two degenerate minima. This allows to reduce the path integral over the gauge fields to an integral over eigenvalues, which can be evaluated for large N. The partition function of U( n) Yang–Mills theory on the classical sphere is recovered in the large N limit, as a sum over instanton contributions. The monopole solutions are found explicitly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.