Abstract

The spherical quantum billiard with a time-varying radius, a(t), is considered. It is proved that only superposition states with components of common rotational symmetry give rise to chaos. Examples of both nonchaotic and chaotic states are described. In both cases, a Hamiltonian is derived in which a and P are canonical coordinate and momentum, respectively. For the chaotic case, working in Bloch variables (x,y,z), equations describing the motion are derived. A potential function is introduced which gives bounded motion of a(t). Poincare maps of (a,P) at x=0 and the Bloch sphere projected onto the (x,y) plane at P=0 both reveal chaotic characteristics. (c) 2000 American Institute of Physics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.