Abstract
A system of two identical superconducting quantum interference devices (SQUIDs) symmetrically coupled through their mutual inductance and driven by a sinusoidal field is investigated numerically with respect to dynamical properties such as its multibranched resonance curve, its bifurcation structure and transition to chaos as well as its synchronization behavior. The SQUID dimer is found to exhibit a hysteretic resonance curve with a bubble connected to it through Neimark-Sacker (torus) bifurcations, along with coexisting chaotic branches in their vicinity. Interestingly, the transition of the SQUID dimer to chaos occurs through a torus-doubling cascade of a two-dimensional torus (quasiperiodicity-to-chaos transition). Periodic, quasiperiodic, and chaotic states are identified through the calculated Lyapunov spectrum and illustrated using Lyapunov charts on the parameter plane of the coupling strength and the frequency of the driving field. The basins of attraction for chaotic and non-chaotic states are determined. Bifurcation diagrams are constructed on the parameter plane of the coupling strength and the frequency of the driving field, and they are superposed to maps of the three largest Lyapunov exponents on the same plane. Furthermore, the route of the system to chaos through torus-doubling bifurcations and the emergence of Hénon-like chaotic attractors are demonstrated in stroboscopic diagrams obtained with varying driving frequency. Moreover, asymmetric states that resemble localized synchronization have been detected using the correlation function between the fluxes threading the loop of the SQUIDs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.