Abstract
This paper discusses the problem of finding and defining chaos in quantum mechanics. While chaotic time evolution appears to be ubiquitous in classical mechanics, it is apparently absent in quantum mechanics in part because for a bound, isolated quantum system, the evolution of its state is multiply periodic. This has led a number of investigators to search for semiclassical signatures of chaos. Here I am concerned with the status of semiclassical mechanics as a distinct third theory of the asymptotic domain between classical and quantum mechanics. I discuss in some detail the meaning of such crucial locutions as the "classical counterpart to a quantum system" and a quantum system's "underlying classical motion". A proper elucidation of these concepts requires a semiclassical association between phase space surfaces and wave-functions. This significance of this association is discussed in some detail.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.