Abstract

We study the Quantum Brownian motion of a charged particle moving in a harmonic potential in the presence of an uniform external magnetic field and linearly coupled to an Ohmic bath through momentum variables. We analyse the growth of the mean square displacement of the particle in the classical high temperature domain and in the quantum low temperature domain dominated by zero point fluctuations. We also analyse the Position Response Function and the long time tails of various correlation functions. We notice some distinctive features, different from the usual case of a charged quantum Brownian particle in a magnetic field and linearly coupled to an Ohmic bath via position variables.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call