Abstract

In the BB84 quantum key distribution (QKD) protocol, the communicating parties do a quantum bit error rate (QBER) test to determine whether there is an eavesdropper trying to gain information about the secret key. However, the QBER is not only influenced by the eavesdropper’s strategies, but also by the imperfections of the physical devices and the channel through which the quantum states propagate. We developed a simple channel model with error parameters describing the channel and the potential polarization switching in the transmitter, to see how those effects influence the QBER in a polarization-qubit BB84 implementation. Certain well-defined probabilistic channel models are compared to see which is responsible for the highest error probability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.