Abstract
In the BB84 quantum key distribution (QKD) protocol, the communicating parties do a quantum bit error rate (QBER) test to determine whether there is an eavesdropper trying to gain information about the secret key. However, the QBER is not only influenced by the eavesdropper’s strategies, but also by the imperfections of the physical devices and the channel through which the quantum states propagate. We developed a simple channel model with error parameters describing the channel and the potential polarization switching in the transmitter, to see how those effects influence the QBER in a polarization-qubit BB84 implementation. Certain well-defined probabilistic channel models are compared to see which is responsible for the highest error probability.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have