Abstract
We analyze the canonical quantum dynamics of the isotropic Universe with a metric approach by adopting a self-interacting scalar field as relational time. When the potential term is absent, we are able to associate the expanding and collapsing dynamics of the Universe with the positive- and negative-frequency modes that emerge in the Wheeler–DeWitt equation. On the other side, when the potential term is present, a non-zero transition amplitude from positive- to negative-frequency states arises, as in standard relativistic scattering theory below the particle creation threshold. In particular, we are able to compute the transition probability for an expanding Universe that emerges from a collapsing regime both in the standard quantization procedure and in the polymer formulation. The probability distribution results similar in the two cases, and its maximum takes place when the mean values of the momentum essentially coincide in the in-going and out-going wave packets, as it would take place in a semiclassical Big Bounce dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.