Abstract
Quantum-inspired algorithms represent an important direction in modern software information technologies that use heuristic methods and approaches of quantum science. This work presents a quantum approach for document search, retrieval, and ranking based on the Bell-like test, which is well-known in quantum physics. We propose quantum probability theory in the hyperspace analog to language (HAL) framework exploiting a Hilbert space for word and document vector specification. The quantum approach allows for accounting for specific user preferences in different contexts. To verify the algorithm proposed, we use a dataset of synthetic advertising text documents from travel agencies generated by the OpenAI GPT-4 model. We show that the "entanglement" in two-word document search and retrieval can be recognized as the frequent occurrence of two words in incompatible query contexts. We have found that the user preferences and word ordering in the query play a significant role in relatively small sizes of the HAL window. The comparison with the cosine similarity metrics demonstrates the key advantages of our approach based on the user-enforced contextual and semantic relationships between words and not just their superficial occurrence in texts. Our approach to retrieving and ranking documents allows for the creation of new information search engines that require no resource-intensive deep machine learning algorithms.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.