Abstract

Quantum computing devices are believed to be powerful in solving hard computational tasks, in particular, combinatorial optimization problems. In the present work, we consider a particular type of the minimum bin packing problem, which can be used for solving the problem of filling spent nuclear fuel in deep-repository canisters that is relevant for atomic energy industry. We first redefine the aforementioned problem it in terms of quadratic unconstrained binary optimization. Such a representation is natively compatible with existing quantum annealing devices as well as quantum-inspired algorithms. We then present the results of the numerical comparison of quantum and quantum-inspired methods. Results of our study indicate on the possibility to solve industry-relevant problems of atomic energy industry using quantum and quantum-inspired optimization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call