Abstract

We present quantum algorithms for solving two problems regarding stochastic processes. The first algorithm prepares the thermal Gibbs state of a quantum system and runs in time almost linear in p Nβ/Z and polynomial in log(1/epsilon), where N is the Hilbert space dimension, β is the inverse temperature, Z is the partition function, and epsilon is the desired precision of the output state. Our quantum algorithm exponentially improves the complexity dependence on 1/epsilon and polynomially improves the dependence on β of known quantum algorithms for this problem. The second algorithm estimates the hitting time of a Markov chain. For a sparse stochastic matrix P, it runs in time almost linear in 1/(epsilon ∆3/2 ), where epsilon is the absolute precision in the estimation and ∆ is a parameter determined by P, and whose inverse is an upper bound of the hitting time. Our quantum algorithm quadratically improves the complexity dependence on 1/epsilon and 1/∆ of the analog classical algorithm for hitting-time estimation. Both algorithms use tools recently developed in the context of Hamiltonian simulation, spectral gap amplification, and solving linear systems of equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.