Abstract

Dimensionality reduction (DR) techniques play an extremely critical role in the data mining and pattern recognition field. However, most DR approaches involve large-scale matrix computations, which cause too high running complexity to implement in the big data scenario efficiently. The recent developments in quantum information processing provide a novel path to alleviate this problem, where a potential quantum acceleration can be obtained comparing with the classical counterpart. Nevertheless, existing proposals for quantum DR methods faced the common dilemma of the nonlinear generalization owing to the intrinsic linear limitation of quantum computation. In this paper, an architecture to simulate the arbitrary nonlinear kernels on a universal quantum computer is illustrated and further propose the quantum kernel principal component analysis (QKPCA) algorithm. The key idea is employing the truncated Taylor expansion to approximate the arbitrary nonlinear kernel within the fixed error and then constructing the corresponding Hamiltonian simulation for the quantum phase estimation algorithm. It is demonstrated theoretically that the QKPCA is qualified for the nonlinear DR task while the exponential speedup is also maintained. In addition, this research has the potential ability to develop other quantum DR approaches and existing linear quantum machine learning models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.