Abstract

We first show how to construct an $O(n)$-depth $O(n)$-size quantum circuit for addition of two $n$-bit binary numbers with no ancillary qubits. The exact size is $7n-6$, which is smaller than that of any other quantum circuit ever constructed for addition with no ancillary qubits. Using the circuit, we then propose a method for constructing an $O(d(n))$-depth $O(n)$-size quantum circuit for addition with $O(n/d(n))$ ancillary qubits for any $d(n) = \Omega(\log n)$. If we are allowed to use unbounded fan-out gates with length $O(n^{\varepsilon})$ for an arbitrary small positive constant $\varepsilon$, we can modify the method and construct an $O(e(n))$-depth $O(n)$-size circuit with $o(n)$ ancillary qubits for any $e(n) = \Omega(\log^* n)$. In particular, these methods yield efficient circuits with depth $O(\log n)$ and with depth $O(\log^* n)$, respectively. We apply our circuits to constructing efficient quantum circuits for Shor's discrete logarithm algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.