Abstract
This article investigates the quantized adaptive finite-time bipartite tracking control problem for high-order stochastic pure-feedback nonlinear multiagent systems with sensor faults and Prandtl-Ishlinskii (PI) hysteresis. Different from the existing finite-time control results, the nonlinearity of each agent is totally unknown in this article. To overcome the difficulties caused by asymmetric hysteresis quantization and PI hysteresis, a new distributed control method is proposed by adopting the adaptive compensation technique without estimating the lower bounds of parameters. Radial basis function neural networks are employed to estimate unknown nonlinear functions and solve the problem of algebraic loop caused by the pure-feedback nonlinear systems. Then, an adaptive neural-network compensation control approach is proposed to tackle the problem of sensor faults. The problem of the "explosion of complexity" caused by repeated differentiations of the virtual controller is solved by using the dynamic surface control technique. Based on the Lyapunov stability theorem, it is proved that all signals of the closed-loop systems are semiglobal practical finite-time stable in probability, and the bipartite tracking control performance is achieved. Finally, the effectiveness of the proposed control strategy is verified by some simulation results.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have