Abstract

The three ab initio nonadiabatic coupling terms related to the three strongly coupled states of the C2H molecule, i.e., 2 2A′, 3 2A′, and 4 2A′, were studied applying the line integral technique [M. Baer, Chem. Phys. Lett. 35, 112 (1975)]. The following was verified: (1) Due to the close proximity of the conical intersections between these three states, two-state quantization cannot always be satisfied between two successive states. (2) It is shown that in those cases where the two-state quantization fails a three-state quantization is satisfied. This three-state quantization is achieved by applying the 3×3 nonadiabatic coupling matrix that contains the three relevant nonadiabatic coupling terms. The quantization is shown to be satisfied along four different contours (in positions and sizes) surrounding the relevant conical intersections.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.