Abstract

Optimum detection schemes based on quantized data are of great interest in radar and sonar applications. The design and properties of multisensor schemes are considered here for detection of weak random signals in additive, possibly non-Gaussian, noise. Signal-to-noise ratios are assumed unknown and the signals at the different sensors may be statistically dependent. Analytical expressions describing the best way to fuse the quantized observations for cases with any given observation sample size are provided. The best schemes for originally quantizing the observations are also studied for the case of asymptotically large observation sample sizes. These schemes are shown to minimize the mean-squared error between the best weak-signal test statistic based on unquantized observations and the best weak-signal test statistic based on quantized observations (under signal absent). Numerical results indicate it is sometimes best for each quantizer to use different size alphabets when a quantizer is located at each sensor. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.