Abstract

Measurement of individual organ tissue oxygen levels can provide information to help evaluate and optimize medical interventions in many areas including wound healing, resuscitation strategies, and cancer therapeutics. Echo planar (19) F MRI has previously focused on tumor oxygen measurement at low oxygen levels (pO(2)) <30 mmHg. It uses the linear relationship between spin-lattice relaxation rate (R(1)) of hexafluorobenzene (HFB) and pO(2). The feasibility of this technique for a wider range of pO(2) values and individual organ tissue pO(2) measurement was investigated in a rat model. Spin-lattice relaxation times (T(1) = 1/R(1)) of hexafluorobenzene were measured using (19) F saturation recovery echo planar imaging. Initial in vitro studies validated the linear relationship between R(1) and pO(2) from 0 to 760 mmHg oxygen partial pressure at 25, 37, and 41°C at 7 Tesla for hexafluorobenzene. In vivo experiments measured rat tissue oxygen (ptO2) levels of brain, kidney, liver, gut, muscle, and skin during inhalation of both 30 and 100% oxygen. All organ ptO(2) values significantly increased with hyperoxia (P < 0.001). This study demonstrates that (19) F MRI of hexafluorobenzene offers a feasible tool to measure regional ptO2 in vivo, and that hyperoxia significantly increases ptO2 of multiple organs in a rat model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.