Abstract

To use quantitative susceptibility mapping (QSM) to investigate changes in cartilage canals in the distal femur of juvenile goats after their surgical transection. Chondronecrosis was surgically induced in the right medial femoral condyles of four 4-day-old goats. Both the operated and control knees were harvested at 2, 3, 5, and 10 weeks after the surgeries. Ex vivo MRI scans were conducted at 9.4 Tesla using TRAFF (relaxation time along a fictitious field)-weighted fast spin echo imaging and QSM to detect areas of chondronecrosis and investigate cartilage canal abnormalities. Histological sections from these same areas stained with hematoxylin and eosin and safranin O were evaluated to assess the affected tissues. Both the histological sections and the TRAFF -weighted images of the femoral condyles demonstrated focal areas of chondronecrosis, evidenced by pyknotic chondrocyte nuclei, loss of matrix staining, and altered MR image contrast. At increasing time points after surgery, progressive changes and eventual disappearance of abnormal cartilage canals were observed in areas of chondronecrosis by using QSM. Abnormal cartilage canals were directly visualized in areas of surgically induced chondronecrosis. Quantitative susceptibility mapping enabled investigation of the vascular changes accompanying chondronecrosis in juvenile goats. Magn Reson Med 77:1276-1283, 2017. © 2016 International Society for Magnetic Resonance in Medicine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.