Abstract

In this study, quantitative structure–retention relationship (QSRR) technique was used to find the best approximation and to predict gas chromatographic retention indices for O-, N-, and S-heterocyclic compounds on standard nonpolar polydimethyl siloxane stationary phase. Boiling point (BP) and calculated properties were used to encode the structure of compounds. Three- and two-dimensional calculated properties such as weighted–holistic invariant molecular (WHIM) descriptors, geometry topology and atom weights assembly (GETAWAY) descriptors, connectivity indices, and zero-dimensional constitutive descriptors were used. Variable subset selection (VSS) and partial least squares (PLS) projections to latent structures were used to select the most significant variables from a large set of descriptors. Multiple linear regression (MLR) and PLS were applied to find the relationship between selected properties and gas chromatographic retention indices. PLS was not able to select the most important descriptors (boiling point or molecular weight). The predictive ability of the models was tested by cross-validation. Solely calculated descriptors were not able to give proper models. Boiling point was always necessary for good prediction. PLS models containing boiling points were suitable for retention index prediction, whereas MLR did not give real linear models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call