Abstract

In modern complex industrial operations, timely fault detection is imperative. While statistical process monitoring is widely used in practice, conventional approaches are usually insensitive to incipient faults (IFs) whose magnitudes are not obvious. To this end, an innovative approach is presented for IF detection in dynamic processes. To begin with, canonical variate residuals (CVRs) are generated by using the canonical variate dissimilarity analysis (CVDA) algorithm. The next step involves calculating statistics for the CVRs and arranging a corresponding statistic matrix. Afterward, the Mahalanobis distance index is constructed for fault detection purpose. The main reasons that this developed approach possesses high sensitivity to IFs in dynamic processes lie in the utilization of CVDA and the idea of monitoring extracted statistics rather than original residuals. Finally, its effectiveness and merits are demonstrated via a numerical example and a benchmark process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.