Abstract

The effect of eight herbicides on the growth of six soil bacteria and three microscopic fungi, and on the amylase, cellulase and dehydrogenase activity in a Hungarian soil was determined. Herbicide decomposition rate in the soil was also assessed. Qualitative structure‐activity relationship (principal component analysis, spectral mapping technique and stepwise regression) analysis showed that the overwhelming majority (about 80%) of the effect of herbicides can be explained by one background variable showing the similarity between their mode of action. The two‐dimensional non‐linear map of principal component loadings and spectral map characteristics suggested that the number of substituents may be important in the determination of the toxic effects. The inhibition of bacterial growth, inhibition of fungal growth, and effects on enzyme activity and decomposition rate all formed different clusters on the maps indicating that herbicides influence these processes differently. Of the nine physicochemical parameters considered, only the electron withdrawing capacity of substituents significantly influenced the biological activity of herbicides, suggesting that electrostatic interactions between the herbicide molecules and micro‐organisms is important.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call