Abstract

A series of isostructural lanthanide complexes [Ln(MPQ)3] (Ln = Nd, Gd, Er, Yb, Lu) using a monoanionic tridentate methylpyridyl-substituted 8-hydroxyquinoline ligand (MPHQ = 2-(5-methylpyridin-2-yl)-8-hydroxyquinoline) have been prepared and characterized using elemental analysis (CHN), single-crystal X-ray diffraction (XRD), and 1H NMR spectroscopy. This ligand forms homoleptic charge-neutral lanthanide complexes with three coordinated ligands arranged in an "up-up-down" fashion around the metal center. The photophysical properties of the Nd, Er, and Yb complexes were investigated using absorption and emission spectroscopy, with the latter species displaying efficient sensitization in the Near Infra-Red (NIR) region and a photoluminescence quantum yield (PLQY) as high as 1.0% in CH2Cl2 solution. The intersystem crossing and energy-transfer processes involved in the antenna effect were further investigated using transient absorption techniques, which revealed essentially quantitative sensitization efficiencies for the NIR-emitting cations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call