Abstract
Quantum chemical calculations including electron correlation and calculations with the density sums (Pixel) method have been performed on a variety of molecular dimers representing some frequently observed recognition modes in molecular condensed phases. Notwithstanding some individual fluctuations when different computational methods are used, there is a general agreement for the relative orders of magnitude. The results have been collected in a table that ranks the interaction energies and amplitudes of the energy wells for the recognition between molecular fragments, providing a quantitative guideline to assess the relative importance of hydrogen bonding, aromatic ring stacking, antiparallel arrangements of polar moieties, weak Coulombic C-H···X interactions, and dispersive interactions between nonpolar groups. Since the Pixel method naturally allows for a separation between Coulombic, dispersion, polarization, and repulsion energy contributions, their relative importance can be analyzed with respect to the chemical constitution of the interacting partners. The relevance of these results to the current ideas and methods of "crystal engineering" is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.