Abstract

Despite its potential, the use of Raman spectroscopy for real-time quantitative reaction monitoring is still rather limited. The problems of fluorescence, laser instability, low intensities, and the inner filter effect often outscore the advantages as narrow bands, the use of glass fibers, and low scattering of water and glass. In this paper, we present real-time quantitative monitoring of the catalyzed Heck reaction by using the solvent as internal standard. In this way, all multiplicative distortions, e.g., laser intensity variations or absorbance of the laser light, can be corrected for. We also show that a limited amount of fluorescence does not hamper the analysis. Finally, we present a new method to correct for the inner filter effect, i.e., the absorbance of Raman scattered light by the reaction medium. Simultaneous absorption measurements of the reaction mixture enable accurate correction of Raman signals for the inner filter effect. Thus, for reaction monitoring applications, a Raman spectrometer should be equipped with an absorbance measurement device.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.