Abstract
Pre-mRNA alternative splicing is a conserved mechanism for eukaryotic cells to leverage existing genetic resources to create a diverse pool of protein products. It is regulated in coordination with other events in RNA metabolism such as transcription, polyadenylation, RNA transport, and nonsense-mediated decay via protein networks. SERINE/ARGININE-RICH 45 (SR45) is thought to be a neutral splicing regulator. It is orthologous to a component of the apoptosis and splicing-associated protein (ASAP) complex functioning to regulate RNA metabolism at multiple levels. Within this context, we try to understand why the sr45-1 mutant Arabidopsis has malformed flowers, delayed flowering time, and increased disease resistance. Prior studies revealed increased expression for some disease resistance genes and the flowering suppressor Flowering Locus C (FLC) in sr45-1 mutants and a physical association between SR45 and reproductive process-related RNAs. Here, we used Tandem Mass Tag-based quantitative mass spectrometry to compare the protein abundance from inflorescence between Arabidopsis wild-type (Col-0) and sr45-1 mutant plants. A total of 7,206 proteins were quantified, of which 227 proteins exhibited significantly different accumulation. Only a small percentage of these proteins overlapped with the dataset of RNAs with altered expression. The proteomics results revealed that the sr45-1 mutant had increased amounts of enzymes for glucosinolate biosynthesis which are important for disease resistance. Furthermore, the mutant inflorescence had a drastically reduced amount of the Sin3-associated protein 18 (SAP18), a second ASAP complex component, despite no significant reduction in SAP18 RNA. The third ASAP component protein, ACINUS, also had lower abundance without significant RNA changes in the sr45-1 mutant. To test the effect of SR45 on SAP18, a SAP18-GFP fusion protein was overproduced in transgenic Arabidopsis Col-0 and sr45-1 plants. SAP18-GFP has less accumulation in the nucleus, the site of activity for the ASAP complex, without SR45. Furthermore, transgenic sr45-1 mutants overproducing SAP18-GFP expressed even more FLC and had a more severe flowering delay than non-transgenic sr45-1 mutants. These results suggest that SR45 is required to maintain the wild-type level of SAP18 protein accumulation in the nucleus and that FLC-regulated flowering time is regulated by the correct expression and localization of the ASAP complex.
Highlights
In eukaryotic cells, pre-mRNA alternative splicing is a conserved mechanism to increase the diversity of mature transcripts and their protein products
The SR45-differentially regulated (SDR) transcript gene ontologies (GO) did not explain flower development, but there was an elevated number of transcripts involved in immunity in the sr45-1 mutants
The analysis identified 542 SERINE/ARGININE-rich 45 (SR45)-dependent alternative splicing events (SAS) that, for the most part, did not overlap with gene expression changes
Summary
Pre-mRNA alternative splicing is a conserved mechanism to increase the diversity of mature transcripts and their protein products. A successful splicing event consists of several sequential steps: splicing factors recruiting spliceosome components; spliceosome components aggregating in sequence to recognize splice sites; catalysis involving the 5’ splice site, branch site, and 3’ splice site; the release of the excised intron and spliced mRNA; and a conclusion with spliceosome disassembling. This process is energy-dependent and is regulated in coordination with other events in RNA metabolism such as transcription, polyadenylation, nuclear export, and nonsense-mediated decay (NMD). A general understanding of the function of the ASAP complex has been mostly focused on transcriptional repression because SAP18 can bind to the mSIN3 transcriptional repressor to recruit histone deacetylases (HDACs) to induce transcriptional silencing in mammalian cells (Zhang et al, 1997)
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have