Abstract

Two human bone marrow stromal cell lines, HS5 and HS27a, co-cultured with myeloid cells, have frequently been used in studies of cross talk between cells in the bone marrow microenvironment and hematopoietic cells. Altered expression of proteins is typically associated with cell-cell signal transduction and regulation of cellular functions. Many studies have focused on key proteins that contribute to functional differences in cell co-culture models, but global quantitative proteome analysis of HS5 and HS27a has not been performed. We employed the stable isotope labeling by amino acids in cell culture (SILAC) method using two stable isotopes each of arginine and lysine to label proteins in the two cell lines. Labeled proteins were analyzed by 2-D ultrahigh-resolution liquid chromatography- LTQ/Orbitrap mass spectrometry. Among 4,213 unique identified and annotated proteins in the cell lines, 1,462 were detected in two independent experiments. Of these, 69 exhibited significant upregulation and 48 significant downregulation (>95% confidence) in HS27a relative to HS5 cells. Gene ontology term and pathway analysis indicated that the differentially regulated proteins were involved in cellular movement, cell-to-cell signaling and interaction, and hematologic system development and function. A total of 55 items were identified in both genomic and proteomic databases. Quantitative reverse transcription polymerase chain reaction and Western blotting were performed on 7 proteins randomly selected from 28 differentially expressed proteins that were identified in both databases and were involved in the top networks/pathways. We observed a decrease in apoptosis in co-cultured KG1a cells when integrin αV was inhibited in HS27a cells, which suggested the functional role of integrin αV in the co-culture system. The integrated genomic/proteomic approach described here, and the identified proteins, will provide a useful basis for further elucidation of molecular mechanisms in the bone marrow microenvironment and for ongoing studies of cross talk among stromal cells and myeloma cells in co-culture systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call