Abstract

Clonal hematopoiesis of indeterminate potential (CHIP) has emerged as a significant precursor to hematological malignancies and is associated with several age-related diseases. We leveraged public data to explore differences in the mutational landscape of CHIP between males (Ms) and females (Fs) and across diverse racial populations. DNA (cytosine-5) methyltransferase 3 alpha (DNMT3A) mutations were substantially more prevalent in Fs than in Ms (38.94% vs. 31.37%, p-value: < 0.001, q-value: < 0.001). Additional sex combs-like 1 (ASXL1) mutations were more frequent in Ms than Fs (5.82% vs. 2.69%, p-value < 0.001, q-value < 0.001). In the racial cohorts with sufficient sample sizes, STAT5B and CSF1R mutations were most frequent in Asian populations (1.40% and 0.84%), followed by Black populations (0.98% and 0.24%) and White populations (0.29% and 0.09%) (p-value: < 0.001 , q-value: 0.023 for both genes). Several other CHIP mutations were enriched in Black: RARA, SMAD2, CDKN1B, CENPA, CTLA4, EIF1AX, ELF3, MSI1, MYC, SOX17, and AURKA. On the other hand, H3C1, H3C4, and MYCL were enriched in the Asian cohort. Our analysis highlights sex and racial differences in CHIP mutations among patients with cancer. As CHIP continues to gain recognition as a critical precursor to malignancies and other diseases, understanding how these differences contribute to CHIP's underlying mechanisms and clinical implications is critical.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.