Abstract

1525 Background: Clonal hematopoiesis of Indeterminate Potential (CHIP) is an age-related phenomenon where somatic mutations accumulate in cells of the blood or bone marrow. It is a source of biological noise that causes false-positives in ctDNA analysis and is present in up to 20% of individuals over the age of 70. The presence of CHIP has been linked to an increased risk of hematologic cancers and cardiovascular disease. The Signatera assay filters CHIP mutations through tumor tissue and germline sequencing thereby reducing false-positive results and focuses on tumor-specific mutations for each patient. Methods: Whole exome sequencing data (average depth ~250x) analyzed from patients’ buffy coat (n = 159) was used to characterize CHIP mutations. Variant calling was performed using Freebayes variant caller with allele frequency threshold between 1% and 10%. Following which variant annotation and selection was performed based on the top 54 genes that are most implicated in myeloid disorders. The selected variants were further screened based on the reported variants in the literature and/or the Catalog of Somatic Mutations in Cancer (COSMIC). Results: The analysis revealed an average of 0.14 (0-2) CHIP mutations per patient with an average variant allele frequency of 3.49% (1%-8.5%). The most common CHIP mutations were observed in DNMT3A, (n = 17), TET2 (n = 7) and TP53 (n = 7) genes. The percentage of patients with at least 1 mutation found in DNMT3A, TET2, and TP53 were 4.2%, 1.94%, and 1.38%, respectively. Other genes containing CHIP mutation included CEBPA, ETV6, HRAS, PDGFRA, NRAS, KMT2A, EZH2, GATA2, GNAS at a frequency below 1%. CHIP mutations were not observed in patients younger than 40 years, but they increased in frequency with every decade of life thereafter. The incidence of CHIP increased from 0.04 for the 40-50 yrs age group to 0.18 for individuals older than 60. Further analysis of associations between incidence of CHIP and cancer type, prior exposure to chemotherapy as well as longitudinal evolution of CHIP mutations during cytotoxic treatment are underway and will be presented. Conclusions: CHIP, a common finding in the elderly population is an important factor to consider in ctDNA analysis and most frequently involves DNMT3A, TET2, and TP53 genes. The frequency of CHIP can be impacted by a number of other factors such as cytotoxic chemo- or radiotherapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call