Abstract

The bitterness of a drug is a major challenge for patient acceptability and compliance, especially for children. Due to the toxicity of medication, a human taste panel test has certain limitations. Atomoxetine hydrochloride (HCl), which is used for the treatment of attention deficit/hyperactivity disorder (ADHD), has an extremely bitter taste. The aim of this work is to quantitatively predict the bitterness of atomoxetine HCl by a biosensor system. Based on the mechanism of detection of the electronic tongue (E-tongue), the bitterness of atomoxetine HCl was evaluated, and it was found that its bitterness was similar to that of quinine HCl. The bitterness threshold of atomoxetine HCl was 8.61 µg/ml based on the Change of membrane Potential caused by Adsorption (CPA) value of the BT0 sensor. In this study, the taste-masking efficiency of 2-hydroxypropyl-β-cyclodextrin (HP-β-CyD) was assessed by Euclidean distances on a principle component analysis (PCA) map with the SA402B Taste Sensing System, and the host–guest interactions were investigated by differential scanning calorimetry (DSC), powder X-ray diffraction (XRD), nuclear magnetic resonance (NMR) spectroscopy and scanning electron microscopy (SEM). Biosensor evaluation and characterization of the inclusion complex indicated that atomoxetine HCl could actively react with 2-hydroxypropyl-β-cyclodextrin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call