Abstract

BackgroundSurface coil-related field inhomogeneity potentially confounds pixel-wise quantitative analysis of perfusion CMR images. This study assessed the effect of surface coil-related field inhomogeneity on the spatial variation of pixel-wise myocardial blood flow (MBF), and assessed its impact on the ability of MBF quantification to differentiate ischaemic from remote coronary territories. Two surface coil intensity correction (SCIC) techniques were evaluated: 1) a proton density-based technique (PD-SCIC) and; 2) a saturation recovery steady-state free precession-based technique (SSFP-SCIC).Methods26 subjects (18 with significant CAD and 8 healthy volunteers) underwent stress perfusion CMR using a motion-corrected, saturation recovery SSFP dual-sequence protocol. A proton density (PD)-weighted image was acquired at the beginning of the sequence. Surface coil-related field inhomogeneity was approximated using a third-order surface fit to the PD image or a pre-contrast saturation prepared SSFP image. The estimated intensity bias field was subsequently applied to the image series. Pixel-wise MBF was measured from mid-ventricular stress images using the two SCIC approaches and compared to measurements made without SCIC.ResultsMBF heterogeneity in healthy volunteers was higher using SSFP-SCIC (24.8 ± 4.1%) compared to PD-SCIC (20.8 ± 3.0%; p = 0.009), however heterogeneity was significantly lower using either SCIC technique compared to analysis performed without SCIC (36.2 ± 6.3%). In CAD patients, the difference in MBF between remote and ischaemic territories was minimal when analysis was performed without SCIC (0.06 ± 0.91 mL/min/kg), and was substantially lower than with either PD-SCIC (0.50 ± 0.63 mL/min/kg; p = 0.013) or with SSFP-SCIC (0.63 ± 0.89 mL/min/kg; p = 0.005). In 6 patients, MBF quantified without SCIC was artifactually higher in the stenosed coronary territory compared to the remote territory. PD-SCIC and SSFP-SCIC had similar differences in MBF between remote and ischaemic territories (p = 0.145).ConclusionsThis study demonstrates that surface coil-related field inhomogeneity can confound pixel-wise MBF quantification. Whilst a PD-based SCIC led to a more homogenous correction than a saturation recovery SSFP-based technique, this did not result in an appreciable difference in the differentiation of ischaemic from remote coronary territories and thus either method could be applied.

Highlights

  • Surface coil-related field inhomogeneity potentially confounds pixel-wise quantitative analysis of perfusion cardiovascular magnetic resonance (CMR) images

  • myocardial blood flow (MBF) heterogeneity in healthy volunteers There was significantly lower MBF heterogeneity in healthy volunteers using proton density (PD)-surface coil intensity correction (SCIC) (20.8 ± 3.0%) compared to steady-state free precession (SSFP)-SCIC (24.8 ± 4.1%; p = 0.009)

  • The current study demonstrates, for the first time, how surface coil-related field inhomogeneity can compromise the ability of MBF quantification to detect coronary artery disease (CAD)

Read more

Summary

Introduction

Surface coil-related field inhomogeneity potentially confounds pixel-wise quantitative analysis of perfusion CMR images. This study assessed the effect of surface coil-related field inhomogeneity on the spatial variation of pixel-wise myocardial blood flow (MBF), and assessed its impact on the ability of MBF quantification to differentiate ischaemic from remote coronary territories. Recent advances in CMR pulse sequences and multielement surface coils have improved the signal-to-noise ratio (SNR) for perfusion CMR. These improvements come with a trade-off in signal intensity homogeneity. The impact of surface coil-related field inhomogeneity on the ability of quantitative perfusion analysis (segmental or pixel-wise) to detect coronary artery disease, has not been evaluated

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call