Abstract

We report, for the first time, the quantitative measurement of the local electric potential of brittle polyelectrolyte hydrogels using the microelectrode technique (MET). Given the solid-like nature of the hydrogels, the difficulty of applying MET is how to make a good contact of the microelectrode to the hydrogel. Poor local contact substantial underestimates the potential. We observed that, the potential measured decays exponentially with the increase of capillary diameter of the microelectrode. This behavior is related to the capillary wall thickness that determines the contact distance of the electrode probe to the hydrogel. The characteristic decay length in respective to the wall thickness is very close to the local Debye length around the capillary. The latter is much larger than that of the bath solution due to the reverse osmosis effect. By using microelectrodes with a tip wall thickness less than the local Debye length, the Donnan potential of polyelectrolyte gel could be accurately measured. Us...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call