Abstract

The organic–inorganic hybrid metal halide perovskites with different dimensions and diverse architectures are highly attractive materials for optoelectronic applications. However, people know little about the dynamics of their formation processes. Here, we study both experimentally and theoretically the self-assembly formation dynamics of the luminescent colloidal CH3NH3PbBr3 nanocrystals. We have observed their successive transformations from original spherical quantum dots to periodically stacked nanoplatelets when the primitive colloidal nanocrystals with a high concentration were maintained in liquid for a prolonged period of time. A theoretical dynamic collision model by taking into account the popular van der Waals force, the polarization force that is unique for the perovskites, and the electrostatic forces between particle surfaces in the presence of the surface ligands is proposed to explain the self-assembly process of the colloidal CH3NH3PbBr3 nanocrystals. The result reveals that the rather ea...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call