Abstract

Developing and assessing nanofluidic systems is time-consuming and costly owing to the method's novelty; hence, modeling is essential to determine the optimal areas for implementation and to grasp its workings. In this work, we examined the influence of dual-pole surface and nanopore configuration on ion transfer simultaneously. To achieve this, the two trumpet and cigarette configuration were coated with a dual-pole soft surface so that the negative charge could be positioned in the nanopore's small aperture. Subsequently, the Poisson-Nernst-Planck and Navier-Stokes equations were simultaneously solved under steady-state circumstances using varied values physicochemical properties for the soft surface and electrolyte. The pore's selectivity was , and the rectification factor, on the other hand, was , when the overall concentration was very low. When the ion partitioning effect is taken into account, we clearly show that the rectifying variables for the cigarette configuration and the trumpet configuration can reach values of 45 and 49.2, when the charge density and mass concentration were 100mol/m3 and 1mM, respectively. By using dual-pole surfaces, the controllability of nanopores' rectifying behavior may be modified to produce superior separation performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.