Abstract
Cardiac arrest (CA) is the leading cause of death and disability in the United States. Early and accurate prediction of CA outcomecan help clinicians and families to make a better-informed decision for the patient's healthcare. Studies have shown that electroencephalography (EEG) may assist in early prognosis of CA outcome. However, visual EEG interpretation is subjective, labor-intensive, and requires interpretation by a medical expert, i.e., neurophysiologists. These limiting factors may hinder the applicability of such testing as the prognostic method in clinical settings. Automatic EEG pattern recognition using quantitative measures can make the EEG analysis more objective and less time consuming. It also allows to detect and display hidden patterns that may be useful for the prognosis over longer time periods of monitoring. Given these potential benefits, there have been an increasing interest over the last few years in the development and employment of EEG quantitative measures to predict CA outcome. This paper extensively reviews the definition and efficacy of various measures that have been employed for the prediction of outcome in CA subjects undergoing hypothermia (a neuroprotection method that has become a standard of care to improve the functional recovery of CA patients after resuscitation). The review details the State-of-the-Art and provides some perspectives on what seems to be promising for the early and accurate prognostication of CA outcome using the quantitative measures of EEG.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.