Abstract
Background: Measurement of oxygen consumption can give useful information of brain functionality in health and disease. To have a better understanding of normal physiology in all conditions (rest or functional tasks), development of accurate brain oxygen mapping is essential. This mapping could also be a great help in managing pathological conditions with disturbance in oxygen supply. One of the most important hemodynamic parameters of the brain is oxygen extraction fraction (OEF). By development of blood oxygen level dependent magnetic resonance imaging (BOLD MRI) in imaging, several methods have been proposed for measuring this parameter. The latest methods are mostly based on hypercapnic and hyperoxic stimulus. Objectives: Here, we presented a new method with hypercapnic and hyperoxic stimulus and using BOLD and dynamic susceptibility contrast (DSC) perfusion imaging instead of arterial spin labelling (ASL). Materials and Methods: A 3T Siemens Trio Tim Scanner was used for imaging five patients (three males and two females) who were recruited for this experiment. Four set of T1 data, BOLD data and two DSC-perfusions (two injections) were applied to each subject. Gas manipulation was applied while acquiring BOLD data and one of the DSC-perfusion was done in hyperoxic condition. Gas manipulation was a combination of hypercapnic, hyperoxic and normoxic conditions in a total of 13 minutes. The DSC data was analyzed using PMA (ASIST) software to calculate cerebral blood flow (CBF) and using its results with the BOLD data, OEF was calculated by MATLAB coding. All preprocessing was done with the SPM12 (MATLAB). Results: Comparable results were acquired for OEF with previous studies. The mean value of estimated OEF for gray matter (GM), white matter (WM) and whole brain is 0.46, 0.37, and 0.44, respectively which are within the expected range of normal condition. Conclusion: As the proposed method for OEF measurement uses a combination of hyperoxic and hypercapnic stimulus with BOLD and DSC-perfusion imaging, it could be considered the most available one in all MRI scanners and being a voxel wise method, it could give OEF value for any requested ROI.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have