Abstract

Localized surface plasmon resonance (LSPR) imaging has the potential to map complex spatio-temporal variations in analyte concentration, such as those produced by protein secretions from live cells. A fundamental roadblock to the realization of such applications is the challenge of calibrating a nanoscale sensor for quantitative analysis. Here, we introduce a new, to our knowledge, LSPR imaging and analysis technique that enables the calibration of hundreds of individual gold nanostructures in parallel. The calibration allowed us to map the fractional occupancy of surface-bound receptors at individual nanostructures with nanomolar sensitivity and a temporal resolution of 225 ms. As a demonstration of the technique’s applicability to molecular and cell biology, the calibrated array was used for the quantitative LSPR imaging of anti-c-myc antibodies harvested from a cultured 9E10 hybridoma cell line without the need for further purification or processing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.