Abstract
In this work, we demonstrate the feasibility of quantitative laser-based x-ray fluorescence (XRF) combined with particle-induced x-ray emission (PIXE) (called XPIF for x-ray and particle-induced fluorescence) spectroscopy analysis for elemental composition in solid samples. A multi-hundred TW laser system accelerated protons and produced x-rays that were impinging on solid samples, inducing characteristic line emissions of the elements contained in the material. The x-ray yield obtained from the characteristic emissions for each element can be related to its mass concentration using both the thick PIXE and thick XRF formalism. This is performed by using of an iterative numerical procedure. We tested the validity of our method on three homogeneous metallic materials, stainless steel, bronze and brass. The mass proportions of these samples retrieved by our analysis (XPIF) is within the errors bars compared with a commercial energy dispersive x-ray spectrometer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.