Abstract
This paper summarizes the effects of irregular shape on the results of a quantitative X-ray fluorescence (XRF) micro-analysis. These effects become relevant when an XRF analysis is performed directly on an investigated material. A typical example is XRF analyses of valuable and historical objects whose measurements should be performed non-destructively and non-invasively, without taking samples. Several measurements and computer simulations were performed for selected metallic materials and shapes to evaluate the accuracy and precision of XRF. The described experiments and the corresponding Monte Carlo simulations were related to the XRF device designed and utilized at the Czech Technical University. It was found that the relative uncertainty was typically about 5-10% or even higher in quantitative analyses of minor elements due to irregular shapes of surfaces. This must be considered in cases of the interpretation of XRF results, especially in the cultural heritage sciences. The conclusions also contain several recommendations on how to measure objects under hard-to-define geometric conditions with respect to reduction in the surface effect in quantitative or semi-quantitative XRF analyses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.