Abstract
To demonstrate that transient acidity exists in certain solid acid catalysts, a convenient and robust 1H solid-state NMR spin-counting method is introduced for the accurate quantification of Bronsted acid sites in zeolites and molecular sieves. Poly(dimethylsiloxane) is used as an inert and easily handled spin-counting standard, allowing internal calibration of MAS NMR peaks arising from both acidic and nonacidic hydrogens in the catalyst. Results from example systems including H-ZSM5, H-ferrierite (H-FER), and SAPO-34 are presented, and the relevance of these measurements to zeolite synthesis conditions, postsynthetic treatments, and reaction mechanisms are discussed. Using this technique, we show the first direct spectroscopic proof that framework Bronsted acidity in SAPO-34 molecular sieves decreases with time following removal of the synthesis template molecules. This effect is similar to hydrothermally catalyzed dealumination in traditional zeolites, except that it occurs at ambient temperature and m...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.